3절 수식

문장 속 수식
문장 속의 수식은
$
$
사이에 넣습니다.
다음 등식 $e^{\pi i}+1=0$이 성립한다
다음 등식 ​\(e^{\pi i}+1=0\)이 성립한다
수식 돋보이기
수식을 돋보이려면
\[
\]
사이에 넣습니다.
다음 등식
\[
    e^{\pi i}+1=0
\]
이 성립한다
다음 등식
\[ e^{\pi i}+1=0 \]
이 성립한다
수와 변수
수식에서 변수는 이탤릭체(italic typeface)로 쓰여집니다.
$1+1$
   ​\(1+1\)
$3.141592$
   ​\(3.141592\)
$1+2i$
   ​\(1+2i\)
$z=2a+3y$
   ​\(z=2a+3y\)
$f(x)=-x+5$
   ​\(f(x)=-x+5\)
위첨자와 아래첨자
위첨자는
^
, 아래첨자는
_
를 사용합니다.
$x_2 + y^{-2}$
   ​\(x_2 + y^{-2}\)
$x_1 + y_2$
   ​\(x_1 + y_2\)
$e^{1234}$
   ​\(e^{1234}\)
$x^3-3x^2+3x-1=(x-1)^3$
   ​\(x^3-3x^2+3x-1=(x-1)^3\)
분수
$-\frac{2}{3}$
   ​\(-\frac{2}{3}\)
$\frac{c}{a+b}$
   ​\(\frac{c}{a+b}\)
제곱근
$\sqrt{2}$
   ​\(\sqrt {2}\)
$\frac{-b+\sqrt{b+4ac}}{2a}$
   ​\(\frac{-b+\sqrt {b+4ac}}{2a}\)
특수기호
$\pm$
   ​\(\pm \)
그리스 문자
$\pi$
   ​\(\pi \)
삼각함수
$\sin(\pi)$
   ​\(\sin (\pi )\)
$\cos(-\pi)$
   ​\(\cos (-\pi )\)
$\tan(\frac{4}{\pi})$
   ​\(\tan (\frac{4}{\pi })\)
연산
$A\cap B$
   ​\(A\cap B\)
$A\cup B$
   ​\(A\cup B\)
관계
$A\subset B$
   ​\(A\subset B\)
$A\supset B$
   ​\(A\supset B\)
$A\subseteq B$
   ​\(A\subseteq B\)
$A\subsetneq B$
   ​\(A\subsetneq B\)
부등식
$2>-3$
   ​\(2>-3\)
$2\ge -3$
   ​\(2\ge -3\)
$-2<3$
   ​\(-2<3\)
$a\le a^2$
   ​\(a\le a^2\)
괄호
$a(b+c)$
   ​\(a(b+c)\)
$a\left(\frac{1}{2}(b+c)\right)$
   ​\(a\left(\frac{1}{2}(b+c)\right)\)
이항계수
$\binom{10}{5}$
   ​\(\binom{10}{5}\)
$\binom{n}{k}$
   ​\(\binom{n}{k}\)
합과 곱
$\sum_{n=1}^{10}n^2$
   ​\(\sum _{n=1}^{10}n^2\)
$\prod_{n=1}^{10}n^2$
   ​\(\prod _{n=1}^{10}n^2\)
극한
$\lim_{x\to 0}\frac{1}{x}$
   ​\(\lim _{x\to 0}\frac{1}{x}\)
$\lim_{x\to\infty} a_n$
   ​\(\lim _{x\to \infty } a_n\)
미분
$\frac{dy}{dx}$
   ​\(\frac{dy}{dx}\)
$f'(x)=\cos(x)$
   ​\(f'(x)=\cos (x)\)
적분
$\int_{-1}^2e^x dx$
   ​\(\int _{-1}^2e^x dx\)
\[
    \int_{-1}^2e^x dx
\]
\[ \int _{-1}^2e^x dx \]
$\int\sin(x)dx=-\cos(x)+C$
   ​\(\int \sin (x)dx=-\cos (x)+C\)
\[
    \int\sin(x)dx=-\cos(x)+C
\]
\[ \int \sin (x)dx=-\cos (x)+C \]
행렬
\[
    \begin{bmatrix}
    1 & 2 \\
    3 & 4
    \end{bmatrix}
\]
\[ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]
\[
    \begin{matrix}
    1 & 2 \\
    3 & 4
    \end{matrix}
\]
\[ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \]
\[
    \left\{\begin{matrix}
    1 & 2 \\
    3 & 4
    \end{matrix}\right.
\]
\[ \left\{ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\right. \]
배열
\[
    \begin{array}{|rl|}
    \hline
    a & b \\
    aa & bb \\
    \hline
    c & d \\
    cc & dd \\
    \hline
    \end{array}
\]
\[ \begin{array}{|rl|} \hline a & b \\ aa & bb \\ \hline c & d \\ cc & dd \\ \hline \end{array} \]